ular, the cyclopropyl anion shows a much more evenly balanced electron population distribution among the carbons in the bent configuration. The bent configurations in the α -halocyclopropyl anions are characterized by a greater electron population on the halogen atom as compared to the planar anions. This additional electron population on the halogen is acquired at the expense of the hydrogens and the α carbon. In fact the α carbon ends up with a net decrease in electron population in the α -fluorocyclopropyl anion. It is notable, however, that the other two carbons in the cyclopropyl ring retain their excess electron population on α -halogen substitution. In fact there is an increasing discrepancy between the electron population on the α carbon and that on the other two carbons as X goes from hydrogen to chlorine and finally to fluorine.

In attempting to determine the relative stability of the three cyclopropyl anions we make use of the concept of the "isodesmic" reaction¹³ of the type shown in eq 1. The energy of re-

$$- \sum_{X} + - \sum_{H} + - \sum_$$

action 1 represents the difference between halogen substituent stabilization of a strained ring and that of its saturated acyclic analogue. By calculating the total energies of all four species, using the same basis set (4-31G) and the same geometries for both rings and for both propanes, we obtain a reaction energy which should indicate whether the halogen has a stabilizing effect on the cyclopropyl anion or not. From the total energies listed in Table V we obtain a reaction energy of -1.8 kcal/mol when X is chlorine and -4.6 kcal/mol when X is fluorine. This suggests that substitution of hydrogen by chlorine may slightly destabilize the cyclopropyl anion whereas substitution by fluorine significantly destabilizes the anion. This pattern of increasing destabilization of the cyclopropyl anion follows the increasing discrepancy between the electron population on the α carbon and that on the other two carbons. However, the energy difference, particularly in the case of chlorine substitution, is so small that perhaps the only reasonable conclusion would be that the halogen substitution at the α carbon has little influence on the stability of the cyclopropyl anion.

In conclusion, therefore, our results show that the three cyclopropyl anions investigated all have substantial barriers to inversion of the X atom in $C_3H_4X^-$ about the plane of the cyclopropyl ring. This would certainly appear to support the idea of configuration retention in such ions. The effect of halogen substitution at the α carbon, while reducing the electron population in the ring, does so primarily at the expense of the α carbon leading to an imbalance of electron population distribution in the ring. The "isodesmic" reaction method suggests that such halogen substitution has only a small effect on the stability of the cyclopropyl anion and that the effect is a destabilizing one.

Reference and Notes

- (1) (a) C. Y. Meyers and V. M. Kolb, *J. Org. Chem.*, **43**, 1985 (1978); (b) C. Y. Meyers, W. S. Matthews, L. L. Ho, V. M. Kolb, and T. E. Parady in "Catalysis" in Organic Syntheses", G. V. Smith, Ed., Academic Press, New York, 1977, pp 197–278; (c) C. Y. Meyers and V. M. Kolb, International Symposium on Chemistry of Strained Rings, SUNY Binghamton, Binghamton, N.Y., May 27-29, 1977, Abstracts, p 28; (d) C. Y. Meyers, V. M. Kolb, and C. T. Webb, American Chemical Society Central Regional Meeting, Akron, Ohio, May 19-21, 1976, Abstracts, Phys. Org.-143; (e) V. M. Kolb, Ph.D. Dissertation Southern Illinois University, Carbondale, Ill., 1976; (f) V. M. Kolb and C. Y. Meyers. 170th National Meeting of the American Chemical Society, Chicago, Ill., Aug. 1975, Abstract ORGN-88; (g) V. M. Kolb and C. Y. Meyers, American Chemical Society Midwest Regional Meeting, Carbondale, III., Oct. 1975, Abstract ORGN-505; (h) J. D. Dill, International Symposium on Chemistry of Strained Rings, SUNY-Binghamton, Binghamton, N.Y., May 27-29, 1977, Abstracts, p 27, reported a strain energy (kcal/mol) of 18.5 for cyclopropyllithium compared to 26.5 for cyclopropane
- (2) M. Charton in "The Chemistry of Alkenes", J. Zabicky, Ed., Wiley-Interscience, New York, 1970, Chapter 10.
- (3) H. M. Walborsky, L. E. Allen, H. J. Traenckner, and E. J. Powers, J. Org. Chem., 36, 2937 (1971).
- (4) G. W. Koeppi, D. S. Sagatys, G. S. Krishanamurthy, and S. I. Miller, J. Am. Chem. Soc., 89, 3396 (1967).
- (5) D. T. Clark and D. R. Armstrong, Theor. Chim. Acta, 14, 370 (1969)
- M. J. S. Dewar, H. Metiu, P. J. Student, A. Brown, R. C. Bingham, D. H. Lo, C. A. Ramsden, H. Kollmar, P. Weiner, and P. K. Bischof, MINDO/3: General IBM Version, modified by M. L. Olson and J. F. Chiang, QCPE No. 309, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Ind.
- (7) W. J. Hehre, W. A. Lathon, R. Ditchfield, M. D. Newton, and J. A. Pople, GAUSSIAN 70, QCPE No. 236, Quantum Chemistry Program Exchange, Indiana University, Bloomington, Ind.
- (8) H. H. Gunthard, R. C. Lord, and T. K. McCubbin, J. Chem. Phys., 25, 768 (1956).
- (9) J. P. Friend and B. P. Dailey, J. Chem. Phys., 29, 557 (1958).
- (10) C. C. Costain and G. B. B. M. Sutherland, J. Phys. Chem., 56, 321 (1952)

- (11) R. E. Weston Jr., J. Am. Chem. Soc., 76, 2645 (1954).
 (12) H. H. Jaffé, private communication.
 (13) M. D. Newton in "Applications of Electronic Structure Theory", H. F. Schaefer III, Ed., Plenum Press, New York, 1977.

Infrared Spectra, Structure, and Bonding in the Dihalocarbene Cations in Solid Argon

Lester Andrews* and Brian W. Keelan

Contribution from the Chemistry Department, University of Virginia, Charlottesville, Virginia 22901. Received January 2, 1979

Abstract: Argon resonance photoionization of CHFCl₂, CDFCl₂, CH₂Cl₂, CD₂Cl₂, and CHCl₃ during condensation with excess argon at 15 K produced a new 1197-cm⁻¹ infrared absorption which is assigned to CCl₂⁺. Chlorine and carbon-13 isotopic data verify the molecular identity and provide a 133° valence angle calculation. The markedly increased ν_3 mode for CCl₂⁺ at 1197 cm⁻¹ above CCl₂ at 746 cm⁻¹ is attributed to enhanced π bonding in the cation. Observation of the CClBr⁺ and CBr₂⁺ cations at 1122 and 1019 cm⁻¹, respectively, in studies with CH₂ClBr and CHFBr₂, CDFBr₂, CH₂Br₂, and CD₂Br₂ reinforces the identification of CCl_2^+ .

Dihalocarbenes have been of considerable interest to physical organic chemists over the last 2 decades.¹ Dichlorocarbene has been trapped in solid argon following generation by photolysis, chemical reaction, and pyrolysis of suitable precursors.²⁻⁴ Isotopic shifts in the matrix infrared spectrum provide a Cl-C-Cl bond angle determination⁵ of $106 \pm 5^{\circ}$, and the position of the infrared fundamentals of CCl₂ question the extent of π bonding in this intermediate.³ π bonding should, however, be enhanced in the dichlorocarbene cation, and the vibrational spectrum of CCl_2^+ will help characterize the bonding in this species.

The dihalocarbene cation has been observed in numerous mass spectroscopic studies; CCl_2^+ is second to CCl_3^+ as the most abundant ion in the mass spectrum of $CCl_4.^6$ However, no other spectroscopic data is available for CCl_2^+ .

Photoionization of halomethane reagents with argon discharge radiation during condensation at 15 K has trapped a number of parent and daughter ions for infrared and optical spectroscopic examination. Studies of CCl₄, CF₃Cl, and CF₃Br, for example,^{7,8} gave spectra of daughter CCl₃⁺, CF₃⁺, CF₂Cl⁺, and CF₂Br⁺ and parent CCl₄⁺, CF₃Cl⁺, and CF₃Br⁺ ions in solid argon, although no evidence for second daughter or "granddaughter" ions of the form CX₂⁺ was obtained in these experiments. We report here infrared spectra in the 1000–1200-cm⁻¹ region from similar photoionization studies on CHFX₂ and CH₂X₂ matrix systems which provide the infrared spectrum of CCl₂⁺ and its bromine-substituted counterparts.

Experimental Section

The cryogenic refrigeration and vacuum system and matrix photoionization methods have been described previously.^{7,9} The CHFCl₂ (Du Pont) and CHFBr₂ (Peninsular Chemresearch) precursors were vacuum distilled from glass beads to remove volatile impurities. The deuterium compound CDFCl₂ was synthesized by reacting CDCl₃ (Merck Sharp and Dohme) with HgF₂ for 30 min at 90 °C in a stainless steel tube; difluoro products were separated by vacuum distillation over glass beads. Carbon-13 enriched CHFCl₂ was synthesized from the reaction of ¹³CHCl₃ (90% ¹³C, Merck Sharp and Dohme) with SbF₃/SbCl₅ at 0 °C for 90 min followed by separation of the product on a preparative gas chromatograph.¹⁰ Dibromofluoromethane-*d* was synthesized by reacting CDBr₃ with a SbF₃/SbF₅ (4/1) mixture at 25 °C for 60 min. The CH₂X₂ and CHX₃ precursors have been described in earlier reports.^{11,12}

Samples of argon/precursor (400/1) were deposited on a CsI substrate at 15 K for 18–20 h with simultaneous irradiation from a windowless argon resonance lamp powered by a microwave discharge. Since a comparable amount of argon from the discharge was condensed with the sample, the Ar/CHFX₂ ratio in the matrix was double the sample value. The present experiments employed 1- and 3-nm orifice discharge tubes. Samples of each reagent were also deposited for 18–20 h without photoionization to measure precursor absorptions. Infrared spectra were recorded during and after sample deposition on expanded wavenumber scales using a Beckman 1R-12. Samples were photolyzed with filtered BH-6-1 (Illumination Industries) high-pressure mercury arc light for 30-min periods, and additional expanded-scale spectra were scanned. Band intensities were measured in absorbance units and wavenumber accuracy is ± 0.2 cm⁻¹ within a single scan.

Results

Observations from matrix photoionization experiments on $CHFX_2$, CH_2X_2 , and CHX_3 (X = Cl, Br) precursors will be described.

Dihalofluoromethanes. Two experiments were done with Ar/CHFCl₂ (400/l) samples using first 1-mm and then 3-mm orifice discharge tubes. The complete spectrum, similar to that reported by Jacox and Milligan,¹³ has been analyzed in detail in a full study of the CHFX₂ isotopic compounds,¹⁴ In the 1-mm tube experiment, a triplet was found at 1197, 1194, 1191 cm^{-1} (A = absorbance units = 0.08, 0.05, 0.01) along with a strong 1179-cm⁻¹ absorption (A = 0.60); the former triplet increased and sharpened (A = 0.26, 0.17, 0.03) while the 1179-cm⁻¹ band was destroyed by 30 min of 220-1000-nm photolysis. The 1179-cm⁻¹ absorption, first assigned to CHFCI⁻ by Jacox and Milligan,¹³ has been reassigned¹⁴ to the intramolecular hydrogen bonded anion Cl-H-(CFCl)-, and the weak 1197-cm⁻¹ feature, unidentified in the previous work, is the subject of the present investigation. The 3-mm tube experiment produced a stronger triplet at 1197.1, 1194.3,

Figure 1. Infrared spectra in the 1140-1200-cm⁻¹ region of dichlorofluoromethane samples subjected to argon resonance photoionization from a 3-mm i.d. orifice discharge tube during condensation with excess argon at 15 K: (a) Ar/CHFCl₂ (400/1); (b) Ar/CDFCl₂ (400/1); (c) Ar/ 13 CHFCl₂ (600/1), 90% carbon-13. Illustrated spectra recorded after 420-1000. 340-600, and 220-1000 nm high-pressure mercury arc photolysis sequence.

 1191.5 cm^{-1} (A = 0.27, 0.19, 0.04) and 1179 cm^{-1} absorption $(A \approx 2.0)$. Photolysis with 290-1000-nm radiation increased the triplet by 10% and markedly reduced the 1179-cm⁻¹ absorption; this spectrum showing the prominent triplet, the remaining 1179-cm⁻¹ band labeled B, and absorption¹⁵⁻¹⁷ due to CHFCl at 1251 cm⁻¹, CFCl at 1146 cm⁻¹, and CFCl₂ at 1144 cm⁻¹ are shown in Figure 1a. An experiment with an $Ar/^{13}CHFCl_2$ (600/1) sample and the 3-mm tube produced a sharp doublet at 1197.1, 1194.3 cm⁻¹, a weak 1179-cm⁻¹ feature (A = 0.16), and a strong 1151-cm⁻¹ counterpart (A \approx 1.5). After photolysis, the 1151-cm⁻¹¹³B absorption was reduced substantially, revealing a sharp doublet at 1158.1, 1155.3 cm⁻¹ (A = 0.13, 0.09), residual ¹³B absorption at 1151 cm^{-1} (A = 0.05), and the sharp doublet at 1197.1, 1194.3 cm^{-1} (A = 0.02, 0.01) which are illustrated in Figure 1c. The analogous experiment with CDFCl₂ and a 3-mm discharge tube produced a sharp 1197, 1194 cm⁻¹ doublet on the side of a very strong 1180-cm⁻¹ species B absorption; the former was not affected by photolysis which markedly reduced the latter giving the infrared spectrum shown in Figure 1b.

Two experiments with CHFBr₂ using the 3-mm tube produced a strong, sharp 1019.5-cm⁻¹ absorption (A = 0.36) which was decreased to A = 0.16 by 290-1000-nm photolysis. Two similar experiments with CDFBr₂ gave the same sharp 1019.5-cm⁻¹ band (A = 0.28) which exhibited identical photolysis behavior. Similar experiments with the 1-mm tube produced weaker 1019.5-cm⁻¹ bands (A = 0.07).

Dihalomethanes. Previous experiments with CH_2Cl_2 in this laboratory using a 1-mm orifice discharge tube produced a

Figure 2. Infrared spectra in the $1020-1200 \cdot \text{cm}^{-1}$ region of methylene halide samples Ar/CH₂X₂ (400/1) subjected to argon resonance photoionization from 1-2-mm i.d. orifice discharge tubes during condensation with excess argon at 15 K: (a) CH₂Cl₂: (b) CD₂Cl₂; (c) CH₂ClBr, illustrated spectra recorded after 420-1000, 340-600, 290-1000, 220-1000 nm photolysis sequence; (d) CH₂Br₂; (e) CD₂Br₂, illustrated spectra recorded after 650-1000-nm photolysis for 30 min.

weak 1194-cm⁻¹ band which photolyzed with red light revealing a new 1197, 1194 cm⁻¹ product absorption not discussed in the earlier report,¹¹ which is of particular interest in this study for comparison to the 1197-cm⁻¹ product band in the above CHFCl₂ studies. An experiment with a 2-mm orifice tube gave a lower yield of the photosensitive 1194- and 764 cm^{-1} bands, assigned to $CH_2Cl_2^+$ in the earlier report, and a higher yield of the 1197-cm⁻¹ absorption. After 290-1000-nm photolysis, three isotopic components were resolved at 1196.8, 1194.0, 1191.4 cm⁻¹ (A = 0.10, 0.06, 0.01), and the 1045.4, 1042.5, 1039.8 cm⁻¹ triplet, assigned to the CHCl₂+ daughter cation, was increased.¹¹ The 1000-1200-cm⁻¹ region from the previous infrared investigation is shown in Figure 2a to provide more information on the new 1197-cm⁻¹ absorption. An experiment was done with CH2Cl2 using the 3-mm orifice discharge tube. The yield of the 1196.8, 1194.0, 1191.4 cm⁻¹ triplet was slightly reduced (A = 0.06, 0.05, 0.01) and the $CH_2Cl_2^+$ band at 764 cm⁻¹ was very weak (A = 0.01), Full arc photolysis for 35 min increased the 1197-cm⁻¹ absorption slightly (A = 0.07, 0.04, 0.01). A CD₂Cl₂ experiment using a 2-mm orifice discharge tube produced an identical 1196.8, 1194.0, 1191.4 cm⁻¹ triplet, but the CDCl₂⁺ absorption shifted to 1128.0, 1226.3, 1224.8 cm⁻¹, which is illustrated in Figure 2b. The ¹³CH₂Cl₂ experiments¹¹ produced weak, sharp new product bands at 1158 and 1155 cm⁻¹, which increased on 220-1000-nm photolysis revealing a weaker 1152-cm⁻¹ partner; the 1158-cm⁻¹ product appeared on top of a very weak 1158-cm⁻¹ 13 CH₂Cl₂ precursor absorption.

An investigation with CH₂ClBr produced sharp, weak 1166-, 1122-, and 993-cm⁻¹ absorptions. Red photolysis de-

stroyed the 1166-cm⁻¹ feature, Pyrex-filtered photolysis produced a sharp 993.5, 989.0 cm⁻¹ doublet (A = 0.14, 0.045) assigned to CHClBr⁺,¹¹ and full arc photolysis halved the CHClBr⁺ features, increased CHClBr radical absorptions¹⁸ at 1196, 1188, 866, and 861 cm⁻¹, and produced a sharp, new unidentified doublet at 1122.0, 1118.0 cm⁻¹ (A = 0.06, 0.02).¹¹ The latter spectrum is shown in Figure 2c.

The details of several methylene bromide experiments have been reported previously.¹¹ A sharp, unidentified 1019.5-cm⁻¹ (A = 0.30) product band is of particular interest here. Red photolysis (650-1000 nm) destroyed the weak 1129-cm⁻¹ absorption assigned to CH₂Br₂⁺ and left the rest of the bands unchanged; this spectrum¹¹ containing 1155, 1165 cm⁻¹ CHBr₂ radical absorptions¹⁸ is illustrated in Figure 2d to contrast the bromine-substituted counterparts of the 1197cm⁻¹ chlorine species. Full arc photolysis reduced the 1019.5-cm⁻¹ band (A = 0.16). A sharp, unshifted 1019.5cm⁻¹ product band with similar behavior was observed in the CD₂Br₂ experiment,¹¹ which, along with CDBr₂⁺ at 1015 cm⁻¹, is shown in Figure 2e.

Trihalomethanes. A thorough study of the chloroformbromoform series of compounds has been performed in this laboratory.¹² The most productive CHCl₃ experiment also produced a weak 1197-cm⁻¹ absorption (A = 0.01). Studies with CHCl₂Br and CHClBr₂ revealed weak 1122-cm⁻¹ bands (A = 0.01 and 0.02). The most productive CHBr₃ study also gave a weak 1019.5-cm⁻¹ product band (A = 0.02).

Discussion

The new product absorptions will be identified and the structure, bonding, and mechanism of formation for this new molecular cation will be discussed.

Identification of CCl₂⁺. The sharp, new resolved triplet measured at 1197.1, 1194.3, 1191.5 cm⁻¹ in matrix photoionization studies of CHFCl2 is in excellent agreement with the 1196.8, 1194.0, 1191.4 cm⁻¹ triplet observed in similar studies with CH₂Cl₂ which suggests that a common fragment is responsible for this new absorption. A weak 1197-cm⁻¹ feature was also found in CHCl₃ work. The relative intensities in the triplet correspond to the 9/6/1 ratio expected for a vibration of two equivalent chlorine atoms with natural-abundance ³⁵Cl and ³⁷Cl isotopes. The 90% carbon-13 enriched ¹³CHFCl₂ study produced the ¹²C³⁵Cl₂, ¹²C³⁵Cl²⁷Cl, ¹³C³⁵Cl₂, and ¹³C³⁵Cl³⁷Cl isotopes with intensities indicative of a single carbon species. The deuterated precursors gave the exact same $(\pm 0.2 \text{ cm}^{-1})$ triplet, which shows that the new product species does not contain deuterium; this evidence is particularly significant for a mode in the hydrogen deformation region since deuterium substitution changes the mixing of C-H deformation and carbon-halogen stretching modes and produces a large shift if H is present in the species. A graphic example is provided by the CHCl₂⁺ and CDCl₂⁺ species shown in Figure 2a,b which exhibit a large 83-cm⁻¹ displacement on deuterium substitution.¹¹ Thus, the isotopic data identify a new (CCl_2) molecular species.

The new product in CH₂ClBr experiments exhibited a 3/1 doublet absorption at 1122, 1118 cm⁻¹ which is precisely that expected for the vibration of a single chlorine atom species with chlorine isotopes in natural abundance. The sharp single 1019.5-cm⁻¹ feature in the CHFBr₂, CH₂Br₂, CDFBr₂, CD₂Br₂, and CHBr₃ experiments, of course, does not involve chlorine nor does it involve hydrogen; bromine isotopic splittings are too small to be resolved. The observation of three product absorptions, 1197, 1122, 1019 cm⁻¹, from the three precursors CH₂Cl₂, CH₂ClBr, and CH₂Br₂ confirms that the new product species contains two equivalent halogen atoms, in agreement with the chlorine isotopic splittings.

The neutral dichlorocarbene ν_3 absorption has been well documented at 746 cm⁻¹ in solid argon.²⁻⁴ The significantly

higher 1197-cm⁻¹ absorption is also above antisymmetric C-Cl₂ stretching modes for CHCl₂⁺ at 1045 cm⁻¹ and CFCl₂⁺ at 1142 cm⁻¹,^{11,19} which point to assignment of the 1197-cm⁻¹ triplet to ν_3 of CCl₂⁺ in solid argon. The 1122, 1118 cm⁻¹ doublet is assigned to CClBr⁺ and the 1019-cm⁻¹ absorption to CBr₂⁺, in this series of dihalocarbene cations, which are above the analogous CHClBr⁺ and CHBr₂⁺ absorptions at 993 and 897 cm⁻¹, respectively.¹¹

A photosensitive 927-cm⁻¹ absorption in proton radiolysis studies of CCl₄ was first assigned to CCl₂⁺ and then reassigned to an asymmetric CCl₂Cl₂⁺ parent ion owing to its photochemical behavior.^{6,7} Appearance potentials²⁰ show that the process CCl₂⁺ \rightarrow CCl⁺ + Cl requires 6.5 eV, which is above the mercury arc energy. Hence CCl₂⁺ cannot photodissociate in these experiments. Although photodetachment of electrons from chloride ion traps and partial neutralization of CCl₂⁺ may be expected on prolonged 220–1000-nm photolysis of these samples,²¹ photobleaching of CCl₂⁺ will probably not reduce CCl₂⁺ absorptions until CHCl₂⁺, a possible photochemical precursor of CCl₂⁺, is also destroyed. The stability of the 1197-cm⁻¹ triplet on mercury arc photolysis is consistent with its assignment to CCl₂⁺.

Structure. The chlorine isotopic triplet indicates two equivalent chlorine atoms. For a symmetrical triatomic, sets of isotopic ν_3 fundamentals provide a basis for calculation of the bond angle. The 1197.1- and 1158.1-cm⁻¹ assignments for ${}^{12}C^{35}Cl_2^+$ and ${}^{13}C^{35}Cl_2^+$ give a Cl-C-Cl angle of 136° and the ${}^{12}C^{35}Cl_2^+$ and ${}^{12}C^{37}Cl_2^+$ observations at 1197.1 and 1191.5 cm⁻¹ provide a 130° value. The average value 133°, with estimated ±8° error limits, should be reliable for CCl₂⁺. Similar calculations for CCl₂ neutral give a 106° average angle. Removal of one electron is expected to increase the bond angle; this relationship is illustrated by the 18- and 17-electron molecules O₃ (117°) and NO₂ (134°), respectively.

Bonding. The substantial increase in ν_3 fundamental from 746 cm⁻¹ for CCl₂ on ionization to 1197 cm⁻¹ for CCl₂⁺ is perhaps more than expected, although considerable increases have been observed for CHCl₂ to CHCl₂⁺ (902 to 1045 cm⁻¹)¹¹ and CFCl₂ to CFCl₂⁺ (919 to 1142 cm⁻¹).¹⁹ Part of the increase in ν_3 for CCl₂⁺ is probably due to increased stretch-stretch interaction owing to the larger valence angle. Although a complete C-Cl bond force constant analysis for CCl_2^+ requires both ν_1 and ν_3 fundamentals, it is clear that the C-Cl stretching force constant for CCl_2^+ will be substantially higher than for CCl_2 . The electron removed from CCl_2 on ionization is probably a chlorine lone pair electron; this vacancy may facilitate contraction of the chlorine 3p orbital and make Cl 3p-C 2p overlap more favorable for π bonding in CCl₂⁺. The increased Cl-C-Cl valence angle also increases the capability for π bonding in the cation. Both of the above points help explain the substantial increase in the ν_3 fundamental for CCl_2^+ as compared to CCl_2 .

It is also of interest to contrast the analogous difluorocarbene cation, which has been produced in CHF₃ photoionization experiments in this laboratory and now can be identified after considering the above case for CCl₂⁺. A sharp 1588-cm⁻¹ absorption with a 1585-cm⁻¹ site splitting shifted to 1550.5 cm⁻¹ upon carbon-13 substitution and exhibited no deuterium shift; this absorption is probably due to CF_2^+ . The 1588-cm⁻¹ absorption is considerably higher than CF₂ at 1222 and 1101 cm⁻¹ but slightly below CHF₂⁺ at 1608 cm⁻¹, ^{22,23} in contrast to CCl₂⁺, which absorbs considerably higher than CHCl₂⁺. Two differences between CF_2 and CCl_2 are worthy of note. First, ionization at 11.4 eV in the former comes from an (a) orbital which is primarily from the carbon lone pair²⁴ whereas ionization of the latter at 9.8 eV²⁵ almost surely involves a chlorine lone-pair electron, and accordingly the π bonding in CF_2^+ and CCl_2^+ will be somewhat different. The proton affinity of CF₂, 172 ± 2 kcal/mol,²⁶ is lower than the proton affinity of CCl₂, 208 \pm 2 kcal/mol,²⁷ which is consistent with CF₂ being more stable than CCl₂. It is suggested that CCl₂⁺ gains more electronic stabilization on ionization than does CF₂⁺ based on the relative positions of the CX₂⁺ and CHX₂⁺ antisymmetric C-X₂ stretching fundamentals.

A MINDO/3 calculation performed by Lowe for CCl_2 and CCl_2^+ showed that the optimum valence angle for the cation is 30° larger than for the neutral carbene. The C-Cl bond length is 0.09 Å *shorter* in the cation since the electron is removed from a molecular orbital that is strongly C-Cl antibonding.²⁸ The MINDO/3 calculation is consistent with the infrared data on CCl_2^+ .

Mechanism of Formation. Dichlorocarbene has been observed as a photolysis product at 746 cm⁻¹ in the CD_2Cl_2 experiments, but this absorption was masked by a parent band in CH_2Cl_2 studies. The most probable method of formation of CCl_2^+ in these experiments is by direct argon resonance photoionization of the CCl_2 intermediate, reaction 1, which requires 9.8 eV in the gas phase.²⁵

$$CCl_2 + h\nu (11.6 - 11.8 \text{ eV}) \rightarrow CCl_2^+ + e^-$$
 (1)

Although CCl_2 was not observed in the infrared studies with $CHFCl_2$, its presence has been verified by optical absorption spectra,^{13,14} and reaction 1 is also a likely route to CCl_2^+ in experiments with $CHFCl_2$.

The CCl₂⁺ yield is, however, a factor of 3 greater in CHFCl₂ relative to CH₂Cl₂ experiments, which suggests an additional mechanism for the formation of CCl₂⁺ with the CHFCl₂ precursor. Optical and infrared spectra suggest that the CHFCl₂⁺ and CHFBr₂⁺ parent ions are also formed in these experiments.¹⁴ Another mechanism for the production of CCl₂⁺ is by HF photoelimination from the parent cation, reaction 2. The dibromocarbene cation is produced by reactions analogous to (1) and (2). The larger yield of the 1019-cm⁻¹ band in these experiments is consistent with higher cross sections for the production of CBr₂⁺.

$$CHFC_{1}^{+} + h\nu (11.6 - 11.8 \text{ eV}) \rightarrow CC_{1}^{+} + HF$$
 (2)

The substantial increase in the CClBr⁺ doublet on 220-1000-nm photolysis suggests a photochemical route for the production of these dihalocarbene cations. The photolysis of the parent cations and the formation of the first daughter ions CHX_2^+ have been discussed in the previous report.¹¹ Full arc photolysis of these samples increases CClBr⁺ at the expense of CHClBr⁺, reaction 3. In addition CHClBr radical bands increased, which shows that photoneutralization of CHClBr⁺ by electron detachment from bromide or chloride ions is a competing process.

 $CHClBr^{+} + h\nu (220-1000 \text{ nm}) \rightarrow CClBr^{+} + H \quad (3)$

Conclusions

Dichlorocarbene cation has been observed at 1197 cm⁻¹ in matrix photoionization experiments with CHFCl₂, CH₂Cl₂, and CHCl₃. Resolved chlorine isotopic splittings and large carbon-13 and no deuterium isotopic shifts verify the molecular identity. The antisymmetric carbon-chlorine absorption for CCl_2^+ at 1197 cm⁻¹ is higher than this mode for CHCl₂⁺ at 1045 cm⁻¹ and substantially higher than CCl₂ at 746 cm⁻¹. This increase is attributed to significantly enhanced π bonding in the cation. Isotopic shifts show that the Cl-C-Cl valence angle is increased 25-30° on ionization. The analogous CClBr⁺ and CBr₂⁺ cations were observed at 1122 and 1019 cm⁻¹, respectively. This work is of interest as the first infrared observation of a second daughter cation.

Acknowledgment. The authors gratefully acknowledge research support from the National Science Foundation (Grant CHE-76-11640).

References and Notes

- (1) (a) W. Kirmse, "Carbene Chemistry", 2nd ed., Academic Press, New York, 1971; (b) M. Jones and R. A. Moss, "Carbenes", Vol. 1, Wiley, New York, 1973; (c) D. Bethell in "Organic Reactive Intermediates", S. P. McManus, Ed., Academic Press, New York, 1973, Chapter 2; (d) J. Hine, "Divalent Carbon", Ronald Press, New York, 1964.
- D. E. Milligan and M. E. Jacox, J. Chem. Phys., 47, 703 (1967).
 L. Andrews, J. Chem. Phys., 48, 979 (1968).
- (4) A. K. Maltsev, R. H. Hauge, and J. L. Margrave, J. Phys. Chem., 75, 3984 (1971).
- (5) D. A. Hatzenbuhler, L. Andrews, and F. A. Carey, J. Am. Chem. Soc., 97, 187 (1975).
- (6) L. Andrews, J. M. Grzybowski, and R. O. Allen, J. Phys. Chem., 79, 904 (1975).
- (7) F. T. Prochaska and L. Andrews, J. Chem. Phys., 67, 1091 (1977).
- F. T. Prochaska and L. Andrews, J. Am. Chem. Soc., 100, 2102 (1978) (9) C. A. Wight, B. S. Ault, and L. Andrews, J. Chem. Phys., 65, 1244
- (1976). (10) L. Andrews, H. Willner, and F. T. Prochaska, J. Fluorine Chem., 13, 273 (1979).
- (11) L. Andrews, F. T. Prochaska, and B. S. Ault, J. Am. Chem. Soc., 101, 9, (1979).

- (12) L. Andrews, C. A. Wight, F. T. Prochaska, S. A. McDonald, and B. S. Ault, *J. Mol. Spectrosc.*, **73**, 120 (1978).
- (13) M. E. Jacox and D. E. Milligan, Chem. Phys., 16, 195 (1976).
- (14) B. W. Keelan and L. Andrews, to be published.
- (15) F. T. Prochaska, B. W. Keelan, and L. Andrews, J. Mol. Spectrosc., to be published. (16) C. E. Smith, D. E. Milligan, and M. E. Jacox, J. Chem. Phys., 54, 2780
- (1971)
- (17) D. E. Milligan, M. E. Jacox, J. H. McAuley, and C. E. Smith, J. Mol. Spectrosc., 45, 377 (1973).
- T. G. Carver and L. Andrews, J. Chem. Phys., 50, 4235 (1969).
 F. T. Prochaska and L. Andrews, J. Chem. Phys., 68, 5568 (1978).
 H. M. Rosenstock, K. Draxi, B. W. Steiner, and J. T. Herron, J. Phys. Chem. Ref. Data, 6, No. 1 (1977).

- (21) F. T. Prochaska and L. Andrews, J. Chem. Phys., 68, 5577 (1978).
 (22) D. E. Milligan and M. E. Jacox, J. Chem. Phys., 48, 2265 (1968).
 (23) L. Andrews and F. T. Prochaska, J. Phys. Chem., 83, 824 (1979).
 (24) J. M. Dyke, L. Golob, N. Jonathan, A. Morris, and M. Okuda, J. Chem. Soc.,

- (24) J. M. Dyte, L. Solido, N. Johannan, A. Morris, and M. Okuda, J. Chem. Soc., Faraday Trans. 2, 70, 1828 (1974).
 (25) J. S. Shapiro and F. P. Lossing, J. Phys. Chem., 72, 1552 (1968).
 (26) J. Vogt and J. L. Beauchamp, J. Am. Chem. Soc., 97, 6682 (1975).
 (27) B. A. Levi, R. W. Taft, and W. J. Hehre, J. Am. Chem. Soc., 99, 8454 (1977).
- (28) J. P. Lowe, unpublished calculation (1979).

Selective Naked-Cluster Cryophotochemistry and SCF-X α -SW Calculations for Cu₂ and Ag₂

Geoffrey A. Ozin,* Helmut Huber, Douglas McIntosh, Steven Mitchell, Joe G. Norman, Jr.,*[†] and Louis Noodleman

Contribution from the Lash Miller Chemical Laboratory and Erindale College, University of Toronto, Toronto, Ontario, Canada, and the Department of Chemistry, University of Washington, Seattle, Washington 98195. Received September 11, 1978

Abstract: The concept of conducting photoselective transformations on small, well-defined, ligand-free transition metal clusters is explored for the first time by investigating the visible (370-390 nm) photochemistry of Ar- and Kr-entrapped Cu₂ and Ag₂. With prior knowledge of the 200–900-nm optical spectra of Cu_{1-3} and Ag_{1-4} clusters, generated either by metal atom deposition or photoclustering techniques, one can rationalize the observed Cu₂ and Ag₂ visible cryophotochemistry in terms of a highly selective matrix-induced photodissociation step for which a mechanism involving formation of a metal atom-matrix atom(s) exciplex is proposed. SCF-X α -SW MO calculations for Cu₂ and Ag₂ confirm that the wavelengths used for the photo excitations are essentially those of the electronic transitions from the main bonding to the main antibonding orbital (i.e., $s\sigma_g$ \rightarrow s σ_u), thus providing a description of the excited states which is useful in accounting for the observed photochemistry. The calculations represent the most thorough theoretical study of Cu_2 and Ag_2 to date. Complete potential curves are calculated and the observed r_e , D_e , and $\nu(M-M)$ are in good agreement with experiment. The bonding at the likely equilibrium distances is discussed; that in Ag_2 is found to be almost purely s, while in Cu_2 there appears to be a minor d contribution. The electronic spectra are assigned in detail from transition-state calculations of both energies and oscillator strengths. The A+X, C+X, and E $\leftarrow X$ systems of Ag₂ are attributed to $s\sigma \rightarrow s\sigma^*$, $s\sigma \rightarrow p\pi$, and $d\pi^* \rightarrow s\sigma^*$ transitions, respectively. The A $\leftarrow X$ and B $\leftarrow X$ systems of Cu₂ are ascribed to $d\pi^* \rightarrow s\sigma^*$ and $s\sigma \rightarrow s\sigma^*$ excitations, and the UV bands of Cu₂ near 260, 235, and 220 nm are assigned to mainly $d\pi^* \rightarrow p\pi$, $s\sigma \rightarrow p\pi$, and $d\sigma \rightarrow s\sigma^*$ processes, respectively.

Introduction

Recent work in our laboratory has demonstrated that small metallic¹ and bimetallic² clusters of known composition can be efficiently generated in low-temperature, weakly interacting matrix supports by narrow-band photoexcitation of the resonance lines of matrix-entrapped metal atomic species. The highly controlled nature and photoselectivity of the aggregation processes involved have recently been unveiled in a series of M/M'/Ar(Kr) bimetallic experiments^{2,3} (where M = Cr; M' = Mo or Ag) in which the following sequence of nucleation events was observed;

 $M^{\dagger} + M^{\dagger} \rightarrow M_2$ $M^{\dagger} + M_2 \rightarrow M_3$ M photomobilization (no M'_2 , M'_3 $M^{\dagger} + MM' \rightarrow M_2M'$ (lusters observed) $M^{\dagger} + M' \rightarrow MM'$ $M^{\dagger} + M'_2 \rightarrow MM'_2$

[†] Fellow of the Alfred P. Sloan Foundation, 1978-1980.

$$\begin{array}{l} \mathsf{M}^{\prime \dagger} + \mathsf{M}^{\prime \dagger} \rightarrow \mathsf{M}^{\prime}_{2} \\ \mathsf{M}^{\prime \dagger} + \mathsf{M}^{\prime}_{2} \rightarrow \mathsf{M}^{\prime}_{3} \\ \mathsf{M}^{\prime \dagger} + \mathsf{M}\mathsf{M}^{\prime} \rightarrow \mathsf{M}\mathsf{M}^{\prime}_{2} \\ \mathsf{M}^{\prime \dagger} + \mathsf{M} \rightarrow \mathsf{M}\mathsf{M}^{\prime} \\ \mathsf{M}^{\prime \dagger} + \mathsf{M}_{2} \rightarrow \mathsf{M}_{2}\mathsf{M}^{\prime} \end{array} \right\} \operatorname{\mathsf{M}^{\prime}}_{P} \operatorname{\mathsf{M}^{\prime}}_{P}$$

(where M^{\dagger} and M'^{\dagger} represent photomobilized M and M', respectively).

Recent emission experiments by Kolb and co-workers^{4a} and Ozin, Kenney-Wallace, and co-workers,4c employing 300-330-nm excitation of Ag atoms in inert gas matrices, have revealed the presence of several intense emission bands. In the cases of argon and krypton the largest Stokes shift corresponds to the most intense band which is centered in the region 400-500 nm. The large Stokes shift suggests the existence of a significant nonradiative energy channel following Ag atom photoexcitation, of which the observed metal atom photomobility is presumably a manifestation. At the present time we

© 1979 American Chemical Society